
Try

' Convert quantity to numeric variable.

QuantityInteger = Integer.Parse(QuantityTe

Try

' Convert price if quantity was success

PriceDecimal = Decimal.Parse(PriceTextB

' Calculate values for sale.

ExtendedPriceDecimal = QuantityInteger

DiscountDecimal = Decimal.Round((Extend

DiscountedPriceDecimal = ExtendedPriceD

‘ Calculate summary values.

QuantitySumInteger += QuantityInteger

DiscountSumDecimal += DiscountDecimal

DiscountedPriceSumDecimal += Discounted

SaleCountInteger += 1

AverageDiscountDecimal = DiscountSumDec

C H A P T E R

2
User Interface
Design

at the completion of this chapter, you will be able to . . .

1. Use text boxes, masked text boxes, rich text boxes, group boxes, check
boxes, radio buttons, and picture boxes effectively.

2. Set the BorderStyle property to make controls appear flat or three-dimensional.

3. Select multiple controls and move them, align them, and set common properties.

4. Make your projects easy for the user to understand and operate by defining
access keys, setting an Accept and a Cancel button, controlling the tab
sequence, resetting the focus during program execution, and causing
ToolTips to appear.

5. Clear the contents of text boxes and labels.

6. Make a control visible or invisible at run time by setting its Visible property.

7. Disable and enable controls at design time and run time.

8. Change text color during program execution.

9. Code multiple statements for one control using the With and End With

statements.

10. Concatenate (join) strings of text.

11. Download the Line and Shape controls, add them to the toolbox, and use the
controls on your forms.

68 V I S U A L B A S I C User Interface Design

RichTextBox

TextBox

MaskedTextBox

CheckBox

RadioButton

GroupBox

Click to open
or close tab

Click to open
or close tab

PictureBox

F i g u r e 2 . 1

The toolbox with two tabs open,
showing the new controls that
are covered in this chapter.
Click the plus and minus signs
on the tabs to open and close
each section.

Introducing More Controls

In Chapter 1 you learned to use labels and buttons. In this chapter you will
learn to use several more control types: text boxes, group boxes, check boxes,
radio buttons, and picture boxes. Figure 2.1 shows the toolbox, with the Con-
tainers and Common Controls tabs open, to show the tools for these new con-
trols. Figure 2.2 shows some of these controls on a form. You will also
download, install, and use the Line and Shape controls in the Visual Basic
PowerPack 2.0.

Each class of controls has its own set of properties. To see a complete list
of the properties for any class of control, you can (1) place a control on a form
and examine the properties list in the Properties window or (2) click on a tool
or a control and press F1 for context-sensitive Help. Visual Studio will display
the Help page for that control, and you can view a list of the properties and an
explanation of their use.

C H A P T E R 2 69

Text Boxes

Use a text box control when you want the user to type some input. The form in
Figure 2.2 has two text boxes. The user can move from one box to the next, make
corrections, cut and paste if desired, and click the Display button when finished.
In your program code you can use the Text property of each text box.

Example

NameLabel.Text = NameTextBox.Text

In this example, whatever the user enters into the text box is assigned to
the Text property of NameLabel. If you want to display some text in a text box
during program execution, assign a literal to the Text property:

MessageTextBox.Text = "Watson, come here."

You can set the TextAlign property of text boxes to change the alignment
of text within the box. In the Properties window, set the property to Left, Right,
or Center. In code, you can set the property using these values:

HorizontalAlignment.Left
HorizontalAlignment.Right
HorizontalAlignment.Center

MessageTextBox.TextAlign = HorizontalAlignment.Left

Text boxes

ButtonsPicture
box

Group
boxes

Radio
buttons

Labels

Check box

F i g u r e 2 . 2

This form uses labels, text
boxes, a check box, radio
buttons, group boxes, and a
picture box.

70 V I S U A L B A S I C User Interface Design

Example Names for Text Boxes

TitleTextBox

CompanyTextBox

Masked Text Boxes

A specialized form of the TextBox control is the MaskedTextBox. You can
specify the format (the Mask property) of the data required of the user. For
example, you can select a mask for a ZIP code, a date, a phone number, or a
social security number. Figure 2.3 shows the Input Mask dialog box where you
can select the mask and even try it out. At run time the user cannot enter char-
acters that do not conform to the mask. For example, the phone number and
social security number masks do not allow input other than numeric digits.

Example Names for Masked Text Boxes

DateMaskedTextBox

PhoneMaskedTextBox

Note: For a date or time mask, the user can enter only numeric digits but
may possibly enter an invalid value; for example, a month or hour greater than
12. The mask will accept any numeric digits, which could possibly cause your
program to generate a run-time error. You will learn to check the input values
in Chapter 4.

F i g u r e 2 . 3

Select a format for the input mask in the Input Mask dialog box, which supplies the
Mask property of the MaskedTextBox control.

C H A P T E R 2 71

Rich Text Boxes

Another variety of text box is the RichTextBox control, which offers a variety
of formatting features (Figure 2.4). In a regular text box, all of the text is for-
matted the same, but in a rich text box, the user can apply character and para-
graph formatting to selected text, much like using a word processor.

One common use for a rich text box is for displaying URL addresses. In a
regular text box, the address appears in the default font color, but the rich text
box displays it as a link when the DetectUrl property is set to True. Note that it is
not an active link, but it does have the formatting to show the URL as an address.

You also can load formatted text into a rich text box from a file stored in
rich text format (rtf). Use the LoadFile method of the rich text box. In this ex-
ample, the file “Rich Text Boxes.rtf” is stored in the bin/debug folder, but you
could include the complete path to load a file from another location.

SampleRichTextBox.LoadFile("Rich Text Boxes.rtf")

Contents of .rtf file

Automatically formatted URL

Regular text box

F i g u r e 2 . 4

Using the RichTextBox control,
you can apply font styles to
selected text, show formatted
URLs, and display text from a
formatted .rtf file

Displaying Text on Multiple Lines

Both the regular text box and the rich text box have properties that allow you to
display text on multiple lines. The WordWrap property determines whether
the contents should wrap to a second line if they do not fit on a single line. The
property is set to True by default. Both controls also have a Multiline property,
which is set to False by default on a text box and True on a rich text box. Both
WordWrap and Multiline must be set to True for text to wrap to a second line.

For a regular text box, you must set Multiline to True and then adjust the
height to accommodate multiple lines. If Multiline is False (the default), a text
box does not have resizing handles for vertical resizing. Be aware that a text box

72 V I S U A L B A S I C User Interface Design

will not automatically resize to display multiple lines even though Multiline is
True; you must make the height tall enough to display the lines.

You can set the Text property of a multiline text box (or rich text box) to a
long value; the value will wrap to fit in the width of the box. You also can enter
multiple lines and choose the location of the line breaks; the techniques differ
depending on whether you set the Text property at design time or in code. At de-
sign time, click on the Text property in the Properties window and click on the
Properties button (the down arrow); a small editing window pops up with instruc-
tions to press Enter at the end of each line and Ctrl + Enter to accept the text
(Figure 2.5). In code, you can use a NewLine character (Environment.New-
Line) in the text string where you want the line to break. Joining strings of text is
called concatenation and is covered in “Concatenating Text” later in this chapter.

TitleRichTextBox.Text = " Pamper Yourself" & Environment.NewLine & _

"All Your Favorite Books"

Properties button

Editor for entering
the Text property

F i g u r e 2 . 5

Click the Properties button for
the Text property and a small
editing box pops up. To enter
multiple lines of text, press
Enter at the end of each line
and Ctrl + Enter to accept
the text.

Group Boxes

GroupBox controls are used as containers for other controls. Usually,
groups of radio buttons or check boxes are placed in group boxes. Using group
boxes to group controls can make your forms easier to understand by separat-
ing the controls into logical groups.

Set a group box’s Text property to the words you want to appear on the top
edge of the box.

Example Names for Group Boxes

ColorGroupBox

StyleGroupBox

C H A P T E R 2 73

Check Boxes

Check boxes allow the user to select (or deselect) an option. In any group of
check boxes, any number can be selected. The Checked property of a check
box is set to False if unchecked or True if checked.

You can write an event procedure for the CheckedChanged event, which
executes when the user clicks in the box. In Chapter 4, when you learn about
If statements, you can take one action when the box is checked and another
action when it is unchecked.

Use the Text property of a check box for the text you want to appear next to
the box.

Example Names for Check Boxes

BoldCheckBox

ItalicCheckBox

Radio Buttons

Use radio buttons when only one button of a group may be selected. Any ra-
dio buttons that you place directly on the form (not in a group box) function as
a group. A group of radio buttons inside a group box function together. The best
method is to first create a group box and then create each radio button inside
the group box.

When you need separate lists of radio buttons for different purposes, you
must include each list in a separate group box. You can find an example pro-
gram later in this chapter that demonstrates using two groups of radio buttons,
one for setting the background color of the form and a second set for selecting
the color of the text on the form. See “Using Radio Buttons for Selecting Colors.”

The Checked property of a radio button is set to True if selected or to False
if unselected. You can write an event procedure to execute when the user se-
lects a radio button using the control’s CheckedChanged event. In Chapter 4
you will learn to determine in your code whether or not a button is selected.

Set a radio button’s Text property to the text you want to appear next to the
button.

Example Names for Radio Buttons

RedRadioButton

BlueRadioButton

Picture Boxes

A PictureBox control can hold an image. You can set a picture box’s Image
property to a graphic file with an extension of .bmp, .gif, .jpg, .jpeg, .png, .ico,
.emf, or .wmf. You first add your images to the project’s resources; then you can
assign the resource to the Image property of a PictureBox control.

Place a PictureBox control on a form and then select its Image property in
the Properties window. Click on the Properties button (Figure 2.6) to display a
Select Resource dialog box where you can select images that you have al-
ready added or add new images (Figure 2.7).

74 V I S U A L B A S I C User Interface Design

Properties button

F i g u r e 2 . 6

Click on the Image property
for a PictureBox control, and
a Properties button appears.
Click on the Properties button
to view the Select Resource
dialog box.

F i g u r e 2 . 7

The Select Resource dialog
box. Make your selection here
for the graphic file you want to
appear in the PictureBox
control; click Import to add an
image to the list.

Click on the Import button of the Select Resource dialog box to add images.
An Open dialog box appears (Figure 2.8), where you can navigate to your image
files. A preview of the image appears in the preview box.

Note: To add files with an ico extension, select All Files for the Files of type
in the Open dialog box.

C H A P T E R 2 75

You can use any graphic file (with the proper format) that you have avail-
able. You will find many icon files included with the Student Data files on the
text Web site (www.mhhe.com/VisualBasic2008).

PictureBox controls have several useful properties that you can set at design
time or run time. For example, set the SizeMode property to StretchImage to
make the graphic resize to fill the control. You can set the Visible property to
False to make the picture box disappear.

For example, to make a picture box invisible at run time, use this code
statement:

LogoPictureBox.Visible = False

You can assign a graphic from the Resources folder at run time. You use
the My keyword, which is a special VB keyword that gives you access to many
system settings. In the following example, “Sunset” is the name of a graphic
(without its extension) in the Resources folder of the project.

SamplePictureBox.Image = My.Resources.Sunset

F i g u r e 2 . 8

Find the text graphic files and icon files supplied by Microsoft in the
Student Data\Graphics folder.

76 V I S U A L B A S I C User Interface Design

Adding and Removing Resources
In Figure 2.6 you saw the easiest way to add a new graphic to the Resources
folder, which you perform as you set the Image property of a PictureBox
control. You also can add, remove, and rename resources using the Visual
Studio Project Designer. From the Project menu, select ProjectName Proper-
ties (which always shows the name of the current project). The Project
Designer opens in the main Document window; click on the Resources tab to
display the project resources (Figure 2.9). You can use the buttons at the top
of the window to add and remove images, or right-click an existing resource to
rename or remove it.

F i g u r e 2 . 9

Click on the Resources tab of the Project Designer to work with project resources.
You can add, remove, and rename resources on this page.

Using Smart Tags

You can use smart tags to set the most common properties of many controls.
When you add a PictureBox or a TextBox to a form, for example, you see a
small arrow in the upper-right corner of the control. Click on the arrow to open
the smart tag for that control (Figure 2.10). The smart tag shows a few proper-
ties that you can set from there, which is just a shortcut for making the changes
from the Properties window.

➤

C H A P T E R 2 77

Using Images for Forms and Controls

You can use an image as the background of a form or a control. For a form, set
the BackgroundImage property to a graphic resource; also set the form’s Back-
groundImageLayout property to Tile, Center, Stretch, or Zoom.

Controls such as buttons, check boxes, and radio buttons have an Image
property that you can set to a graphic from the project’s resources.

Setting a Border and Style

Most controls can appear to be three-dimensional or flat. Labels, text boxes, and
picture boxes all have a BorderStyle property with choices of None,
FixedSingle, or Fixed3D. Text boxes default to Fixed3D ; labels and picture boxes
default to None. Of course, you can change the property to the style of your choice.

Feedback 2.1
Create a picture box control that displays an enlarged icon and appears in a 3D
box. Make up a name that conforms to this textbook’s naming convention.

Property Setting

Name

BorderStyle

SizeMode

Visible

Drawing a Line

You can draw a line on a form by using the Label control. You may want to include
lines when creating a logo or you may simply want to divide the screen by drawing
a line. To create the look of a line, set the AutoSize property of your label to False,
set the Text property to blank, set the BorderStyle to None, and change the

Popup
smart tag

Smart tag arrow

F i g u r e 2 . 1 0

Point to the smart tag arrow
to open the smart tag for a
control. For this PictureBox
control, you can set the Image,
Size Mode, and Dock properties
in the smart tag.

78 V I S U A L B A S I C User Interface Design

Backcolor to the color you want for the line. You can control the size of the line
with the Width and Height properties, located beneath the Size property.

Another way to draw a line on a form is to use the LineShape control, which
you can download and install into Visual Studio. See “Downloading and Using
the Line and Shape Controls” later in this chapter.

You also can draw a line on the form using the graphics methods. Drawing
graphics is covered in Chapter 13.

Working with Multiple Controls

You can select more than one control at a time, which means that you can move
the controls as a group, set similar properties for the group, and align the
controls.

Selecting Multiple Controls

There are several methods of selecting multiple controls. If the controls are
near each other, the easiest technique is to use the mouse to drag a selection
box around the controls. Point to a spot that you want to be one corner of a box
surrounding the controls, press the mouse button, and drag to the opposite cor-
ner (Figure 2.11). When you release the mouse button, the controls will all be
selected (Figure 2.12). Note that selected labels and check boxes with AutoSize
set to True do not have resizing handles; other selected controls do have resiz-
ing handles.

You also can select multiple controls, one at a time. Click on one control to
select it, hold down the Ctrl key or the Shift key, and click on the next control.
You can keep the Ctrl or Shift key down and continue clicking on controls you
wish to select. Ctrl-click (or Shift-click) on a control a second time to deselect
it without changing the rest of the group.

When you want to select most of the controls on the form, use a combina-
tion of the two methods. Drag a selection box around all of the controls to select
them and then Ctrl-click on the ones you want to deselect. You also can select
all of the controls using the Select All option on the Edit menu or its keyboard
shortcut: Ctrl + A.

Drag to here

Start here

F i g u r e 2 . 1 1

Use the pointer to drag a
selection box around the
controls you wish to select.

C H A P T E R 2 79

Deselecting a Group of Controls

When you are finished working with a group of controls, it’s easy to deselect
them. Just click anywhere on the form (not on a control) or select another pre-
viously unselected control.

Moving Controls as a Group

After selecting multiple controls, you can move them as a group. To do this,
point inside one of the selected controls, press the mouse button, and drag the
entire group to a new location (Figure 2.13).

F i g u r e 2 . 1 3

Drag a group of selected
controls to move the entire
group to a new location.

Setting the font for the form changes
the default font for all controls on the
form. ■

TIP

Make sure to read Appendix C for
tips and shortcuts for working with
controls. ■

TIP

Setting Properties for Multiple Controls

You can set some common properties for groups of controls. After selecting the
group, look at the Properties window. Any properties that appear in the window
are shared by all of the controls and can be changed all at once. For example,
you may want to set the BorderStyle property for a group of controls to three-
dimensional or change the font used for a group of labels. Some properties
appear empty; those properties do not share a common value. You can enter a
new value that will apply to all selected controls.

Resizing
handles

Selection
handles

F i g u r e 2 . 1 2

When multiple controls are
selected, each has resizing
handles (if resizable).

80 V I S U A L B A S I C User Interface Design

Aligning Controls

After you select a group of controls, it is easy to resize and align them using the
buttons on the Layout toolbar (Figure 2.14) or the corresponding items on the
Format menu. Select your group of controls and choose any of the resizing but-
tons. These can make the controls equal in width, height, or both. Then select
another button to align the tops, bottoms, or centers of the controls. You also
can move the entire group to a new location.

Note: The alignment options align the group of controls to the control that
is active (the sizing handles are white). Referring to Figure 2.12, the upper text
box is the active control. To make another selected control the active control,
simply click on it.

To set the spacing between controls, use the buttons for horizontal and/or
vertical spacing. These buttons enable you to create equal spacing between
controls or to increase or decrease the space between controls.

Note: If the Layout toolbar is not displaying, select View / Toolbars / Layout.

Tab Order

Merge Cells

Send To Back

Bring To Front

Center Vertically

Center Horizontally

Remove Vertical Spacing

Decrease Vertical Spacing

Increase Vertical Spacing

Make Vertical Spacing Equal

Remove Horizontal Spacing

Decrease Horizontal Spacing

Increase Horizontal Spacing

Make Horizontal Spacing Equal

Size To Grid

Make Same Size

Make Same Height

Make Same W
idth

Align Bottoms

Align Middles

Align Tops

Align Rights

Align Centers

Align Lefts

Align to Grid

F i g u r e 2 . 1 4

Resize and align multiple controls using the Layout toolbar.

Designing Your Applications for User Convenience

One of the goals of good programming is to create programs that are easy to use.
Your user interface should be clear and consistent. One school of thought says
that if users misuse a program, it’s the fault of the programmer, not the users.
Because most of your users will already know how to operate Windows pro-
grams, you should strive to make your programs look and behave like other
Windows programs. Some of the ways to accomplish this are to make the con-
trols operate in the standard way, define keyboard access keys, set a default
button, and make the Tab key work correctly. You also can define ToolTips,
which are those small labels that pop up when the user pauses the mouse
pointer over a control.

Designing the User Interface

The design of the screen should be easy to understand and “comfortable” for
the user. The best way to accomplish these goals is to follow industry standards
for the color, size, and placement of controls. Once users become accustomed
to a screen design, they will expect (and feel more familiar with) applications
that follow the same design criteria.

C H A P T E R 2 81

You should design your applications to match other Windows applications.
Microsoft has done extensive program testing with users of different ages, gen-
ders, nationalities, and disabilities. We should take advantage of this research
and follow their guidelines. Take some time to examine the screens and dialog
boxes in Microsoft Office as well as those in Visual Studio.

One recommendation about interface design concerns color. You have
probably noticed that Windows applications are predominantly gray. A reason
for this choice is that many people are color blind. Also, research shows that
gray is easiest for the majority of users. Although you may personally prefer
brighter colors, you will stick with gray, or the system palette the user chooses,
if you want your applications to look professional.

Note: By default the BackColor property of forms and controls is set to Control,
which is a color included in the operating system’s palette. If the user changes the
system theme or color, your forms and controls will conform to their new settings.

Colors can indicate to the user what is expected. Use a white background
for text boxes to indicate that the user should input information. Use a gray
background for labels, which the user cannot change. Labels that will display
a message should have a border around them; labels that provide text on the
screen should have no border (the default).

Group your controls on the form to aid the user. A good practice is to cre-
ate group boxes to hold related items, especially those controls that require
user input. This visual aid helps the user understand the information that is
being presented or requested.

Use a sans serif font on your forms, such as the default MS Sans Serif, and
do not make them boldface. Limit large font sizes to a few items, such as the
company name.

Defining Keyboard Access Keys

Many people prefer to use the keyboard, rather than a mouse, for most opera-
tions. Windows is set up so that most functions can be done with either the key-
board or a mouse. You can make your projects respond to the keyboard by
defining access keys, also called hot keys. For example, in Figure 2.15 you
can select the OK button with Alt + o and the Exit button with Alt + x.

F i g u r e 2 . 1 5

The underlined character
defines an access key. The user
can select the OK button by
pressing Alt + o and the Exit
button with Alt + x.

82 V I S U A L B A S I C User Interface Design

You can set access keys for buttons, radio buttons, and check boxes when
you define their Text properties. Type an ampersand (&) in front of the char-
acter you want for the access key; Visual Basic underlines the character.
You also can set an access key for a label; see “Setting the Tab Order for
Controls” later in this chapter.

For examples of access keys on buttons, type the following for the button’s
Text property:

for

for

When you define access keys, you need to watch for several pitfalls. First,
try to use the Windows-standard keys whenever possible. For example, use the
x of Exit and the S of Save. Second, make sure you don’t give two controls the
same access key. It confuses the user and doesn’t work correctly. Only the next
control (from the currently active control) in the tab sequence is activated when
the user presses the access key.

Note: To view the access keys on controls or menus in Windows 2000,
Windows XP, or Windows Vista, you may have to press the Alt key, depending
on your system settings. You can set Windows Vista to always show underlined
shortcuts in the Control Panel’s Ease of Use section. Select Change how your
keyboard works, and check the box for Underline keyboard shortcuts and access
keys.

Setting the Accept and Cancel Buttons

Are you a keyboard user? If so, do you mind having to pick up the mouse and
click a button after typing text into a text box? Once a person’s fingers are on
the keyboard, most people prefer to press the Enter key, rather than to click the
mouse. If one of the buttons on the form is the Accept button, pressing Enter is
the same as clicking the button.

You can make one of your buttons the Accept button by setting the
AcceptButton property of the form to the button name. When the user
presses the Enter key, that button is automatically selected.

You also can select a Cancel button. The Cancel button is the button that is
selected when the user presses the Esc key. You can make a button the Cancel
button by setting the form’s CancelButton property. An example of a good
time to set the CancelButton property is on a form with OK and Cancel buttons.
You may want to set the form’s AcceptButton to OKButton and the CancelBut-
ton property to CancelButton.

Setting the Tab Order for Controls

In Windows programs, one control on the form always has the focus. You can
see the focus change as you tab from control to control. For many controls, such
as buttons, the focus appears as a thick border. Other controls indicate the fo-
cus by a dotted line or a shaded background. For text boxes, the insertion point
(also called the cursor) appears inside the box.

ExitE&xit

OK&OK

Use two ampersands when you want

to make an ampersand appear in the

Text property: &Health && Welfare

for “Health & Welfare”. ■

TIP

C H A P T E R 2 83

Some controls can receive the focus; others cannot. For example, text boxes
and buttons can receive the focus, but labels and picture boxes cannot.

The Tab Order
Two properties determine whether the focus stops on a control and the order in
which the focus moves. Controls that are capable of receiving focus have a
TabStop property, which you can set to True or False. If you do not want the
focus to stop on a control when the user presses the Tab key, set the TabStop
property to False.

The TabIndex property determines the order the focus moves as the Tab
key is pressed. As you create controls on your form, Visual Studio assigns the
TabIndex property in sequence. Most of the time that order is correct, but if you
want to tab in some other sequence or if you add controls later, you will need to
modify the TabIndex properties of your controls.

When your program begins running, the focus is on the control with the
lowest TabIndex (usually 0). Since you generally want the insertion point to ap-
pear in the first control on the form, its TabIndex should be set to 0. The next
control should be set to 1; the next to 2; and so forth.

You may be puzzled by the properties of labels, which have a TabIndex prop-
erty but not a TabStop. A label cannot receive focus, but it has a location in the
tab sequence. This fact allows you to create keyboard access keys for text boxes.
When the user types an access key that is in a label, such as Alt + N, the focus
jumps to the first TabIndex following the label (the text box). See Figure 2.16.

TabIndex�1

TabIndex�3

TabIndex�4

TabIndex�5

TabIndex�0

TabIndex�2

F i g u r e 2 . 1 6

To use a keyboard access key
for a text box, the TabIndex of
the label must precede the
TabIndex of the text box.

Make sure to not have duplicate
numbers for the TabIndex properties
or duplicate keyboard access keys.
The result varies depending on the
location of the focus and is very
confusing. ■

TIPBy default, buttons, text boxes, and radio buttons have their TabStop prop-
erty set to True. Be aware that the behavior of radio buttons in the tab sequence
is different from other controls: The Tab key takes you only to one radio button
in a group (the selected button), even though all buttons in the group have their
TabStop and TabIndex properties set. If you are using the keyboard to select ra-
dio buttons, you must tab to the group and then use your up and down arrow
keys to select the correct button.

84 V I S U A L B A S I C User Interface Design

Setting the Tab Order
To set the tab order for controls, you can set each control’s TabIndex property in
the Properties window. Or you can use Visual Studio’s great feature that helps
you set TabIndexes automatically. To use this feature, make sure that the Design
window is active and select View / Tab Order or click the Tab Order button on the
Layout toolbar. (The Tab Order item does not appear on the menu and is not
available on the Layout toolbar unless the Design window is active.) Small num-
bers appear in the upper-left corner of each control; these are the current
TabIndex properties of the controls. Click first in the control that you want to be
TabIndex zero, then click on the control for TabIndex one, then click on the next
control until you have set the TabIndex for all controls (Figure 2.17).

To set the tab order for a group of
controls, first set the TabIndex prop-
erty for the group box and then set
the TabIndex for controls inside the
group. ■

TIP

F i g u r e 2 . 1 7

Click on each control, in
sequence, to set the TabIndex
property of the controls
automatically.

When you have finished setting the TabIndex for all controls, the white
numbered boxes change to blue. Select View / Tab Order again to hide the
sequence numbers or press the Esc key. If you make a mistake and want to
change the tab order, turn the option off and on again, and start over with
TabIndex zero again, or you can keep clicking on the control until the number
wraps around to the desired value.

Setting the Form’s Location on the Screen

When your project runs, the form appears in the upper-left corner of the screen
by default. You can set the form’s screen position by setting the StartPosition
property of the form. Figure 2.18 shows your choices for the property setting.
To center your form on the user’s screen, set the StartPosition property to
CenterScreen.

C H A P T E R 2 85

Creating ToolTips

If you are a Windows user, you probably appreciate and rely on ToolTips,
those small labels that pop up when you pause your mouse pointer over a tool-
bar button or control. You can easily add ToolTips to your projects by adding a
ToolTip component to a form. After you add the component to your form,
each of the form’s controls has a new property: ToolTip on ToolTip1, assum-
ing that you keep the default name, ToolTip1, for the control.

To define ToolTips, select the ToolTip tool from the toolbox (Figure 2.19)
and click anywhere on the form or double-click the ToolTip tool in the toolbox.
The new control appears in the component tray that opens at the bottom of the
Form Designer (Figure 2.20). The component tray holds controls that do not
have a visual representation at run time, such as the PrintForm control that you
used in Chapter 1.

After you add the ToolTip component, examine the properties list for other
controls on the form, such as buttons, text boxes, labels, radio buttons, check
boxes, and even the form itself. Each has a new ToolTip on ToolTip1 property.

Try this example: Add a button to any form and add a ToolTip component.
Change the button’s Text property to Exit and set its ToolTip on ToolTip1 prop-
erty to Close and Exit the program. Now run the project, point to the Exit button,
and pause; the ToolTip will appear (Figure 2.21).

You also can add multiline ToolTips. In the ToolTip on ToolTip1 property,
click the drop-down arrow. This drops down a white editing box in which you
enter the text of the ToolTip. Type the first line and press Enter to create a sec-
ond line; press Ctrl + Enter to accept the text (or click somewhere outside the
Property window).

F i g u r e 2 . 1 8

Set the StartPosition property
of the form to CenterScreen
to make the form appear in the
center of the user’s screen when
the program runs.

F i g u r e 2 . 1 9

Add a ToolTip component to
your form; each of the form’s
controls will have a new
property to hold the text of the
ToolTip.

86 V I S U A L B A S I C User Interface Design

You can modify the appearance of a ToolTip by setting properties of the
ToolTip component. Select the ToolTip component in the component tray and
try changing the BackColor and ForeColor properties. You also can set the Is-
Balloon property to True for a different appearance and include an icon in the
ToolTips by selecting an icon for the ToolTipIcon property (Figure 2.22). Once
you set properties for a ToolTip component, they apply to all ToolTips displayed
with that component. If you want to create a variety of appearances, the best ap-
proach is to create multiple ToolTip components, giving each a unique name.
For example, you might create three ToolTip components, in which case you
would have properties for ToolTip on ToolTip1, ToolTip on ToolTip2, and
ToolTip on ToolTip3 for the form and each control.

F i g u r e 2 . 2 1

Use the ToolTip on ToolTip1
property to define a ToolTip.

F i g u r e 2 . 2 0

The new ToolTip component
goes in the component tray at
the bottom of the Form
Designer window.

C H A P T E R 2 87

Coding for the Controls

You already know how to set initial properties for controls at design time. You
also may want to set some properties in code, as your project executes. You can
clear out the contents of text boxes and labels, reset the focus (the active con-
trol), change the color of text, or change the text in a ToolTip.

Clearing Text Boxes and Labels

You can clear out the contents of a text box or label by setting the property to an
empty string. Use "" (no space between the two quotation marks). This empty
string is also called a null string or zero-length string. You also can clear out a
text box using the Clear method or setting the Text property to String.Empty.
Note that the Clear method works for text boxes but not for labels.

Examples

' Clear the contents of text boxes and labels.

NameTextBox.Text = ""

MessageLabel.Text = ""

DataTextBox.Clear()

MessageLabel.Text = String.Empty

Resetting the Focus

As your program runs, you want the insertion point to appear in the text box
where the user is expected to type. The focus should therefore begin in the first
text box. But what about later? If you clear the form’s text boxes, you should re-
set the focus to the first text box. The Focus method handles this situation.

F i g u r e 2 . 2 2

A ToolTip with properties
modified for IsBalloon,
ToolTipIcon, BackColor, and
ForeColor.

88 V I S U A L B A S I C User Interface Design

Remember, the convention is Object.Method, so the statement to set the inser-
tion point in the text box called NameTextBox is as follows:

' Make the insertion point appear in this text box.

NameTextBox.Focus()

Note: You cannot set the focus to a control that has been disabled. See
“Disabling Controls” later in this chapter.

Setting the Checked Property of Radio Buttons
and Check Boxes

Of course, the purpose of radio buttons and check boxes is to allow the user to
make selections. However, at times you need to select or deselect a control in
code. You can select or deselect radio buttons and check boxes at design time
(to set initial status) or at run time (to respond to an event).

To make a radio button or check box appear selected initially, set its
Checked property to True in the Properties window. In code, assign True to its
Checked property:

' Make button selected.

RedRadioButton.Checked = True

' Make check box checked.

DisplayCheckBox.Checked = True

' Make check box unchecked.

DisplayCheckBox.Checked = False

At times, you need to reset the selected radio button at run time, usually for
a second request. You only need to set the Checked property to True for one
button of the group; the rest of the buttons in the group will set to False auto-
matically. Recall that only one radio button of a group can be selected at one
time.

Setting Visibility at Run Time

You can set the visibility of a control at run time.

' Make label invisible.

MessageLabel.Visible = False

You may want the visibility of a control to depend on the selection a user
makes in a check box or radio button. This statement makes the visibility
match the check box: When the check box is checked (Checked = True), the
label is visible (Visible = True).

' Make the visibility of the label match the setting in the check box.

MessageLabel.Visible = DisplayCheckBox.Checked

➤

C H A P T E R 2 89

Disabling Controls

The Enabled property of a control determines whether the control is avail-
able or “grayed-out.” The Enabled property for controls is set to True by de-
fault, but you can change the value either at design time or run time. You might
want to disable a button or other control initially and enable it in code, de-
pending on an action of the user. If you disable a button control (Enabled =
False) at design time, you can use the following code to enable the button at run
time.

DisplayButton.Enabled = True

When you have a choice to disable or hide a control, it’s usually best to
disable it. Having a control disabled is more understandable to a user than hav-
ing it disappear.

To disable radio buttons, consider disabling the group box holding the
buttons, rather than the buttons themselves. Disabling the group box grays the
entire group.

DepartmentGroupBox.Enabled = False

Note: Even though a control has its TabStop property set to True and its
TabIndex is in the proper order, you cannot tab to a control that has been
disabled.

Feedback 2.2
1. Write the Basic statements to clear the text box called CompanyTextBox

and reset the insertion point into the box.
2. Write the Basic statements to clear the label called CustomerLabel and

place the insertion point into a text box called OrderTextBox.
3. What will be the effect of each of these Basic statements?

(a) PrintCheckBox.Checked = True

(b) ColorRadioButton.Checked = True

(c) DrawingPictureBox.Visible = False

(d) LocationLabel.BorderStyle = BorderStyle.Fixed3D

(e) CityLabel.Text = CityTextBox.Text

(f) RedRadioButton.Enabled = True

Setting Properties Based on User Actions

Often you need to change the Enabled or Visible property of a control based on
an action of the user. For example, you may have controls that are disabled or
invisible until the user signs in. In the following example, when the user logs in
and clicks the Sign In button, several controls become visible, others become
invisible, and a group box of radio buttons is enabled:

90 V I S U A L B A S I C User Interface Design

Private Sub SignInButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles SignInButton.Click

' Set up the screen to display the department promotions and the

' welcome message. Hide the sign-in controls.

' Hide and disable the sign-in controls.

CheckInGroupBox.Visible = False

SignInButton.Enabled = False

' Enable the group of radio buttons.

DepartmentGroupBox.Enabled = True

' Show the promotions controls.

PromotionTextBox.Visible = True

ImageVisibleCheckBox.Visible = True

WelcomeRichTextBox.Visible = True

'Display the welcome message.

WelcomeRichTextBox.Text = "Welcome Member #" & MemberIDMaskedTextBox.Text _

& Environment.NewLine & NameTextBox.Text

End Sub

Changing the Color of Text

You can change the color of text by changing the ForeColor property of a
control. Actually, most controls have a ForeColor and a BackColor property.
The ForeColor property changes the color of the text; the BackColor property
determines the color around the text.

The Color Constants
Visual Basic provides an easy way to specify a large number of colors. These
color constants are in the Color class. If you type the keyword Color and a
period in the editor, you can see a full list of colors. Some of the colors are
listed below.

Color.AliceBlue

Color.AntiqueWhite

Color.Bisque

Color.BlanchedAlmond

Color.Blue

Examples

NameTextBox.ForeColor = Color.Red

MessageLabel.ForeColor = Color.White

Using Radio Buttons for Selecting Colors

Here is a small example (Figure 2.23) that demonstrates using two groups of
radio buttons to change the color of the form (the form’s BackColor property)
and the color of the text (the form’s ForeColor property). The radio buttons in
each group box operate together, independently of those in the other group box.

C H A P T E R 2 91

'Project: Ch02Colors

'Programmer: Bradley/Millspaugh

'Date: June 2008

'Description: Demonstrate changing a form's background and foreground

' colors using two groups of radio buttons.

Public Class ColorsForm

Private Sub BeigeRadioButton_CheckedChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles BeigeRadioButton.CheckedChanged

' Set the form color to beige.

Me.BackColor = Color.Beige

End Sub

Private Sub BlueRadioButton_CheckedChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles BlueRadioButton.CheckedChanged

' Set the form color to blue.

Me.BackColor = Color.Blue

End Sub

Private Sub YellowRadioButton_CheckedChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles YellowRadioButton.CheckedChanged

' Set the form color to yellow.

Me.BackColor = Color.Yellow

End Sub

Private Sub GrayRadioButton_CheckedChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles GrayRadioButton.CheckedChanged

' Set the form color to gray.

Me.BackColor = Color.Gray

End Sub

One group of
radio buttons

Another group
of radio buttons

F i g u r e 2 . 2 3

The radio buttons in each
group box function
independently of the other
group. Each button changes a
property of the form:
BackColor changes the
background of the form itself
and ForeColor changes the
color of the text on the form.

92 V I S U A L B A S I C User Interface Design

Private Sub BlackRadioButton_CheckedChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles BlackRadioButton.CheckedChanged

' Set the text color to black.

Me.ForeColor = Color.Black

End Sub

Private Sub WhiteRadioButton_CheckedChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles WhiteRadioButton.CheckedChanged

' Set the text color to white.

Me.ForeColor = Color.White

End Sub

End Class

Changing Multiple Properties of a Control

By now you can see that there are times when you will want to change several
properties of a single control. In early versions of Visual Basic, you had to write
out the entire name (Object.Property) for each statement.

Examples

TitleTextBox.Visible = True

TitleTextBox.ForeColor = Color.White

TitleTextBox.Focus()

Of course, you can still specify the statements this way, but Visual Basic
provides a better way: the With and End With statements.

The With and End With Statements—General Form

With TitleTextBox

.Visible = True

.ForeColor = Color.White

.Focus()

End With

E
xam

ple

With ObjectName
' Statement(s)

End With

G
eneral

F
orm

You specify an object name in the With statement. All subsequent statements
until the End With relate to that object.

The With and End With Statements—Example

The statements beginning with With and ending with End With are called a
With block. The statements inside the block are indented for readability. Al-
though indentation is not required by VB, it is required by good programming
practices and aids in readability.

C H A P T E R 2 93

The real advantage of using the With statement, rather than spelling out
the object for each statement, is that With is more efficient. Your Visual Basic
projects will run a little faster if you use With. On a large, complicated project,
the savings can be significant.

Concatenating Text

At times you need to join strings of text. For example, you may want to join a
literal and a property. You can “tack” one string of characters to the end of an-
other in the process called concatenation. Use an ampersand (&), preceded
and followed by a space, between the two strings.

Examples

MessageLabel.Text = "Your name is: " & NameTextBox.Text

NameAndAddressLabel.Text = NameTextBox.Text & " " & AddressTextBox.Text

Continuing Long Program Lines

Basic interprets the code on one line as one statement. You can type very long
lines in the Editor window; the window scrolls sideways to allow you to keep
typing. However, this method is inconvenient; it isn’t easy to see the ends of the
long lines.

When a Basic statement becomes too long for one line, use a line-
continuation character. You can type a space and an underscore, press
Enter, and continue the statement on the next line. It is OK to indent the con-
tinued lines. The only restriction is that the line-continuation character must
appear between elements; you cannot place a continuation in the middle of a
literal or split the name of an object or property.

Example

GreetingsLabel.Text = "Greetings " & NameTextBox.Text & ": " & _

"You have been selected to win a free prize. " & _

"Just send us $100 for postage and handling."

Downloading and Using the Line and Shape Controls

You can add graphic shapes to your forms using a set of controls that Microsoft
makes available in a PowerPack, which is a separate and free download. After
you download the PowerPack, you run the installation file, which installs the
controls into Visual Studio. Once installed, you can add the controls to the
Visual Studio toolbox.

Download and Install the Controls
The first step is to download from Microsoft’s site: http://msdn2.microsoft.com/
en-us/vbasic/bb735936.aspx and follow the links to download the installation
file.

It’s best to download the file VisualBasicPowerPacks3Setup.exe to your
hard drive (save it somewhere easy to find, such as the desktop). After the
download is complete, make sure that Visual Studio is not running and double-
click the setup file name to run the setup.

Although in some situations Basic al-
lows concatenation with the + oper-
ator, the practice is not advised.
Depending on the contents of the
text box, the compiler may interpret
the + operator as an addition oper-
ator rather than a concatenation op-
erator, giving unpredictable results
or an error. ■

TIP

94 V I S U A L B A S I C User Interface Design

If you are running the Professional Edition or above and Visual Studio is
closed, the new tools are automatically added to a new section of the toolbox.
You can find the new section, called Visual Basic Power Packs 3.0, at the bot-
tom of the toolbox (Figure 2.24).

For the Express Edition, or the Professional Edition if the IDE was open when
you ran setup, you must manually add the controls to the toolbox. Open Visual
Studio or Visual Basic Express and start a new project so that you can see the
Form Designer and the toolbox. Right-click in the toolbox and select Add Tab. Type
“Visual Basic Power Packs 3.0” as the Tab name, then right-click on the new tab
and select Choose Items from the context menu. The Choose Toolbox Items dialog
box appears with the list of all available tools. You can save some time by typing
“Power” in the Filter box, which will limit the list to the PowerPack controls. Then
select LineShape, OvalShape, and RectangleShape (PrintForm should already be
selected). If you have multiple versions of the controls listed, choose the highest
version number (9.0.0.0 as of this writing). Then click OK to return to the toolbox.

The new tools should appear in the Visual Basic PowerPacks 3.0 tab of the
toolbox.

Note: The controls appear in the section of the toolbox that is active when
you select Choose Toolbox Items.

F i g u r e 2 . 2 4

The line and shape controls in the toolbox, with some sample controls on the form.

Place the Controls on a Form
To place a control on the form, click on the tool in the toolbox and use the
mouse pointer to draw the shape that you want on the form. Alternately, you can
double-click one of the tools to create a default size control that you can move
and resize as desired.

The line and shape controls have many properties that you can set, as well as
events, such as Click and DoubleClick, for which you can write event procedures.

Properties of a line include BorderStyle (Solid, Dot, Dash, and a few more);
BorderWidth (the width of the line, in pixels); BorderColor; and the locations for
the two endpoints of the line (X1, X2, X3, X4). Of course, you can move and resize
the line visually, but it sometimes is more precise to set the pixel location exactly.

C H A P T E R 2 95

The properties of the shape controls are more interesting. You can set trans-
parency with the BackStyle property and the border with BorderColor,
BorderStyle, and BorderWidth. Set the interior of the shape using FillColor, Fill-
GradientColor, FillGradientStyle, and FillStyle. You can give a rectangle rounded
corners by setting the CornerRadius, which defaults to zero for square corners.

Your Hands-On Programming Example

Create a form that allows members to log in and view special promotions for
R ’n R. The member name is entered in a text box, and the member ID is entered
in a masked text box that allows five numeric digits. Include three buttons: one
for Sign In, one for Print, and one for Exit. Set the AcceptButton to the Sign In
button, and use the Exit button for the CancelButton. Include keyboard short-
cuts as needed.

Use a group box of radio buttons for the departments and another group box
to visually separate the data entry boxes (the text box and masked text box).

A check box allows the user to choose whether an image should display for
the selected department. You will need an image to display for each depart-
ment. You can use any images that you have available, find them on the Web,
or use images from the text Web site.

When the program begins, the Department group box should be disabled
and visible, and the controls for the image, promotion, and check box should be
invisible. When the user clicks on the Sign In button, the data entry boxes and
labels should disappear, and the promotions text box, the department image,
and the check box should appear. Display the user name and member ID con-
catenated in a rich text box. (Hint: If you place the data entry controls in a
group box, you can simply set the group box visibility to False.)

Add ToolTips as appropriate. The ToolTip for the Member ID text box
should say: “Your 5 digit member number.”

Planning the Project
Sketch a form (Figure 2.25), which your users sign off as meeting their needs.

CheckInGroupBox

WelcomeRichTextBox

NameTextBox
MemberIDMaskedTextBox

Department Elite Member Check In
Books
Music
Periodicals
Coffee Bar

SignInButton

PrintButton

ExitButton

MainForm

DepartmentGroupBox

DepartmentPictureBox

PromotionTextBox

BooksRadioButton
MusicRadioButton

PeriodicalsRadioButton
CoffeeBarRadioButton

Print

Sign In

Exit

Image Visible

Name
Member ID

F i g u r e 2 . 2 5

A planning sketch of the form for the hands-on programming example.

96 V I S U A L B A S I C User Interface Design

Note: Although this step may seem unnecessary, having your users sign off
is standard programming practice and documents that your users have been in-
volved and have approved the design.

Plan the Objects and Properties Plan the property settings for the form and for each control.

Object Property Setting

MainForm Name MainForm

Text R ’n R--For Reading and Refreshment”

AcceptButton SignInButton

CancelButton ExitButton

StartPosition CenterScreen

DepartmentGroupBox Name DepartmentGroupBox

Text Department

BooksRadioButton Name BooksRadioButton

Text &Books

MusicRadioButton Name MusicRadioButton

Text &Music

PeriodicalsRadioButton Name PeriodicalsRadioButton

Text Perio&dicals

CoffeeBarRadioButton Name CoffeeBarRadioButton

Text &Coffee Bar

SignInButton Name SignInButton

Text &Sign In

PrintButton Name PrintButton

Text &Print

ExitButton Name ExitButton

Text E&xit

DepartmentPictureBox Name DepartmentPictureBox

Visible False

SizeMode StretchImage

ImageVisibleCheckBox Name ImageVisibleCheckBox

Text Image &Visible

Visible False

PromotionTextBox Name PromotionTextBox

Text (blank)

C H A P T E R 2 97

Object Property Setting

CheckInGroupBox Name CheckInGroupBox

Text Elite Member Check In

Label1 Text &Name

Label2 Text Member &ID

NameTextBox Name NameTextBox

Text (blank)

MemberIDMaskedTextBox Name MemberIDMaskedTextBox

Text (blank)

Mask 00000

WelcomeRichTextBox Name WelcomeRichTextBox

Text (blank)

PrintForm1 Name PrintForm1

ToolTip1 Name ToolTip1

Plan the Event Procedures You will need event procedures for each button,
radio button, and check box.

Procedure Actions-Pseudocode

BooksRadioButton_CheckedChanged Display “Buy two, get the second one for half
price” and the books image.

MusicRadioButton_CheckedChanged Display “Get a free MP3 download with purchase
of a CD” and the music image.

PeriodicalsRadioButton_CheckedChanged Display “Elite members receive 10% off every
purchase” and the periodicals image.

CoffeeBarRadioButton_CheckedChanged Display “Celebrate the season with 20% off
specialty drinks” and the coffee image.

ImageVisibleCheckBox_CheckedChanged Set the visibility of the department image.

SignInButton_Click Hide the check-in group box.

Disable the sign-in button

Enable the Department group box.

Make the check box, promotion text box, and the
welcome text box visible.

Concatenate the name and member ID and display
them in the welcome rich text box.

PrintButton_Click Set the print action to Print Preview.

Call the Print method.

ExitButton_Click End the project.

98 V I S U A L B A S I C User Interface Design

Write the Project Follow the sketch in Figure 2.25 to create the form. Figure
2.26 shows the completed form.

• Set the properties of each object, as you have planned. Make sure to set the
tab order of the controls.

• Working from the pseudocode, write each event procedure.

• When you complete the code, thoroughly test the project.

F i g u r e 2 . 2 6

The form for the hands-on
programming example.

The Project Coding Solution

'Project: Ch02HandsOn

'Programmer: Bradley/Millspaugh

'Date: June 2008

'Description: Allow the user to sign in and display current sales promotion.

Public Class MainForm

Private Sub BooksRadioButton_CheckedChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles BooksRadioButton.CheckedChanged

' Display the image and promotion for the Books department.

DepartmentPictureBox.Image = My.Resources.Books

PromotionTextBox.Text = "Buy two, get the second one for half price."

End Sub

Private Sub CoffeeBarRadioButton_CheckedChanged(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles CoffeeBarRadioButton.CheckedChanged

' Display the image and promotion for the Coffee Bar.

DepartmentPictureBox.Image = My.Resources.Coffee

PromotionTextBox.Text = _

"Celebrate the season with 20% off specialty drinks."

End Sub

C H A P T E R 2 99

Private Sub MusicRadioButton_CheckedChanged(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles MusicRadioButton.CheckedChanged

' Display the image and promotion for the Music department.

DepartmentPictureBox.Image = My.Resources.Music

PromotionTextBox.Text = "Get a free MP3 download with purchase of a CD."

End Sub

Private Sub PeriodicalsRadioButton_CheckedChanged(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles PeriodicalsRadioButton.CheckedChanged

' Display the image and promotion for the Periodicals department.

DepartmentPictureBox.Image = My.Resources.Periodicals

PromotionTextBox.Text = "Elite members receive 10% off every purchase."

End Sub

Private Sub ImageVisibleCheckBox_CheckedChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles ImageVisibleCheckBox.CheckedChanged

' Set the visibility of the department image.

DepartmentPictureBox.Visible = ImageVisibleCheckBox.Checked

End Sub

Private Sub SignInButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles SignInButton.Click

' Set up the screen to display the department promotions and the

' welcome message. Hide the sign-in controls.

' Hide and disable the sign-in controls.

CheckInGroupBox.Visible = False

SignInButton.Enabled = False

' Enable the group of radio buttons.

DepartmentGroupBox.Enabled = True

' Show the promotions controls.

PromotionTextBox.Visible = True

ImageVisibleCheckBox.Visible = True

WelcomeRichTextBox.Visible = True

' Display the welcome message.

WelcomeRichTextBox.Text = "Welcome Member #" & MemberIDMaskedTextBox.Text _

& Environment.NewLine & NameTextBox.Text

End Sub

Private Sub PrintButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles PrintButton.Click

' Print the form in the Print Preview window.

PrintForm1.PrintAction = Printing.PrintAction.PrintToPreview

PrintForm1.Print()

End Sub

Private Sub ExitButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles ExitButton.Click

' End the program.

Me.Close()

End Sub

End Class

100 V I S U A L B A S I C User Interface Design

Good Programming Habits

1. Always test the tab order on your forms. Fix it if necessary by changing
the TabIndex properties of the controls.

2. Provide visual separation for input fields and output fields and always
make it clear to the user which are which.

3. Make sure that your forms can be navigated and entered from the key-
board. Always set an Accept button (AcceptButton property) for every
form.

4. To make a label maintain its size regardless of the value of the Text
property, set AutoSize to False.

5. To make the text in a text box right justified or centered, set the
TextAlign property.

6. You can use the Checked property of a check box to set other properties
that must be True or False.

S u m m a r y

1. Text boxes are used primarily for user input. The Text property holds the
value input by the user. You also can assign a literal to the Text property
during design time or run time.

2. A MaskedTextBox has a Mask property that allows you to specify the data
type and format of the input data.

3. A RichTextBox is a specialized text box that allows additional formatting of
the text.

4. Both text boxes and rich text boxes have Multiline and WordWrap proper-
ties that can allow a long Text property to wrap to multiple lines. The text
will wrap to the width of the control, which must be tall enough to display
multiple lines.

5. Group boxes are used as containers for other controls and to group like
items on a form.

6. Check boxes and radio buttons allow the user to make choices. In a group
of radio buttons, only one can be selected; but in a group of check boxes,
any number of the boxes may be selected.

7. The current state of check boxes and radio buttons is stored in the Checked
property; the CheckedChanged event occurs when the user clicks on one of
the controls.

8. Picture box controls hold a graphic, which is assigned to the Image prop-
erty. Set the SizeMode property to StretchImage to make the image resize to
fit the control.

9. The Resources tab of the Project Designer can be used to add, remove, and
rename images in the project Resources folder.

10. Forms and controls can display images from the project’s resources. Use
the form’s BackgroundImage property and a control’s Image property.

11. The BorderStyle property of many controls can be set to None, FixedSingle,
or Fixed3D to determine whether the control appears flat or three-
dimensional.

12. To create a line on a form, you can use a Label control, or use the new
LineShape control included in the Visual Basic Power Packs.

AcceptButton property 82
access key 81
BorderStyle property 77
CancelButton property 82
check box 73
Checked property 73
color constant 90
concatenation 93
container 72

empty string 87
Enabled property 89
focus 82
Focus method 87
ForeColor property 90
GroupBox control 72
Image property 73
line-continuation character 93
MaskedTextBox 70

C H A P T E R 2 101

13. You can select multiple controls and treat them as a group, including
setting common properties at once, moving them, or aligning them.

14. Make your programs easier to use by following Windows standard guide-
lines for colors, control size and placement, access keys, default and Cancel
buttons, and tab order.

15. Define keyboard access keys by including an ampersand in the Text
property of buttons, radio buttons, check boxes, and labels.

16. Set the AcceptButton property of the form to the desired button so that the
user can press Enter to select the button. If you set the form’s CancelButton
property to a button, that button will be selected when the user presses the
Esc key.

17. The focus moves from control to control as the user presses the Tab key.
The sequence for tabbing is determined by the TabIndex properties of the
controls. The Tab key stops only on controls that have their TabStop prop-
erty set to True and are enabled.

18. Set the form’s location on the screen by setting the StartPosition property.
19. Add a ToolTip control to a form and then set the ToolTip on ToolTip1 prop-

erty of a control to make a ToolTip appear when the user pauses the mouse
pointer over the control. You can set properties of the ToolTip component
to modify the background, foreground, shape, and an icon for the ToolTips.

20. Clear the Text property of a text box or a label by setting it to an empty
string. Text boxes also can be cleared using the Clear method.

21. To make a control have the focus, which makes it the active control, use the
Focus method. Using the Focus method of a text box makes the insertion
point appear in the text box. You cannot set the focus to a disabled control.

22. You can set the Checked property of a radio button or check box at run
time and also set the Visible property of controls in code.

23. Controls can be disabled by setting the Enabled property to False.
24. Change the color of text in a control by changing its ForeColor property.
25. You can use the color constants to change colors during run time.
26. The With and End With statements provide an easy way to refer to an

object multiple times without repeating the object’s name.
27. Joining two strings of text is called concatenation and is accomplished by

placing an ampersand between the two elements. (A space must precede
and follow the ampersand.)

28. Use a space and an underscore to continue a long statement on another
line.

K e y T e r m s

102 V I S U A L B A S I C User Interface Design

Multiline property 71
NewLine character 72
PictureBox control 73
Project Designer 76
radio button 73
RichTextBox 71
Select Resource dialog box 73
SizeMode property 75
StartPosition property 84
StretchImage 75
TabIndex property 83

TabStop property 83
text box 69
Text property 69
TextAlign property 69
ToolTip 85
ToolTip component 85
ToolTip on ToolTip1 property 85
Visible property 75
With and End With statements 92
With block 92
WordWrap property 71

R e v i e w Q u e s t i o n s

1. You can display program output in a text box or a label. When should you
use a text box? When is a label appropriate?

2. What would be the advantage of using a masked text box rather than a text
box?

3. When would it be appropriate to use a rich text box instead of a text box?
4. What properties of a TextBox and RichTextBox must be set to allow a long

Text property to wrap to multiple lines?
5. How does the behavior of radio buttons differ from the behavior of check

boxes?
6. If you want two groups of radio buttons on a form, how can you make the

groups operate independently?
7. Explain how to make a graphic appear in a picture box control.
8. Describe how to select several labels and set them all to 12-point font size

at once.
9. What is the purpose of keyboard access keys? How can you define them in

your project? How do they operate at run time?
10. Explain the purpose of the AcceptButton and CancelButton properties of

the form. Give an example of a good use for each.
11. What is a ToolTip? How can you make a ToolTip appear?
12. What is the focus? How can you control which object has the focus?
13. Assume you are testing your project and don’t like the initial position of the

insertion point. Explain how to make the insertion point appear in a differ-
ent text box when the program begins.

14. During program execution, you want to return the insertion point to a text
box called AddressTextBox. What Basic statement will you use to make that
happen?

15. What Basic statements will clear the current contents of a text box and a
label?

16. How are the With and End With statements used? Give an example.
17. What is concatenation and when would it be useful?
18. Explain how to continue a very long Basic statement onto another line.

C H A P T E R 2 103

P r o g r a m m i n g E x e r c i s e s

Graphics Files: You can find the icon files in the StudentData\Graphics folder
on the text Web site (www.mhhe.com/VB2008).

2.1 Create a project that will switch a light bulb on and off, using the user
interface shown below as a guide.
Form: Include a text box for the user to enter his or her name. Create two
picture boxes, one on top of the other. Only one will be visible at a time.
Use radio buttons to select the color of the text in the label beneath the
light bulb picture box.

Include keyboard access keys for the radio buttons and the buttons.
Make the Exit button the Cancel button. Create ToolTips for both light bulb
picture boxes; make the ToolTips say “Click here to turn the light on or off.”
Project Operation: The user will enter a name and click a radio button for
the color (not necessarily in that order). When the light bulb is clicked,
display the other picture box and change the message below it. Concate-
nate the user name to the end of the message.

The two icon files are Lightoff.ico and Lighton.ico and are found in the
following folder:

Graphics\MicrosoftIcons

(See the note at the top of the exercises for graphic file locations.)
Coding: In the click event procedure for each Color radio button, change
the color of the message below the light bulb.

2.2 Write a project to display the flags of four different countries, depending
on the setting of the radio buttons. In addition, display the name of the
country in the large label under the flag picture box. The user also can
choose to display or hide the form’s title, the country name, and the name
of the programmer. Use check boxes for the display/hide choices.

Include keyboard access keys for all radio buttons, check boxes, and
buttons. Make the Exit button the Cancel button. Include ToolTips.

104 V I S U A L B A S I C User Interface Design

You can choose the countries and flags.
Hints: When a project begins running, the focus goes to the control

with the lowest TabIndex. Because that control likely is a radio button,
one button will appear selected. You must either display the first flag to
match the radio button or make the focus begin in a different control. You
might consider beginning the focus on the button.

Set the Visible property of a control to the Checked property of the cor-
responding check box. That way when the check box is selected, the con-
trol becomes visible.

Because all three selectable controls will be visible when the project
begins, set the Checked property of the three check boxes to True at
design time. Set the flag picture box to Visible = False so it won’t
appear at startup. (If you plan to display the picture box at startup, its
Visible property must be set to True.)

Make sure to set the SizeMode property of the picture box control to
StretchImage.

2.3 Write a project to display a weather report. The user can choose one of the
radio buttons and display an icon and a message. The message should
give the weather report in words and include the person’s name (taken
from the text box at the top of the form). For example, if the user chooses
the Sunny button, you might display “It looks like sunny weather today,
John” (assuming that the user entered John in the text box).

Include keyboard access keys for the button and radio buttons. Make
the Exit button the Cancel button and include ToolTips.

C H A P T E R 2 105

The four icons displayed are called Cloud.ico, Rain.ico, Snow.ico, and
Sun.ico. (See the note at the top of the exercises for graphic file locations.)

2.4 Write a project that will input the user name and display a message of the
day in a label, along with the user’s name. Include buttons (with keyboard
access keys) for Display, Clear, and Exit. Make the Display button the
Accept button and the Clear button the Cancel button. Include ToolTips
where appropriate.

Include a group of radio buttons for users to select the color of the mes-
sage. Give them a choice of four different colors.

Make your form display a changeable picture box. You can use the
happy face icon files or any other images you have available (Face01.ico,
Face02.ico, and Face03.ico). (See the note at the top of the exercises for
graphic file locations.)

You may choose to have only one message of the day, or you can have
several that the user can select with radio buttons. You might want to
choose messages that go with the different face icons.

2.5 Create a project that allows the user to input information and then display
the lines of output for a mailing label.

Remember that fields to be input by the user require text boxes, but
display the output in labels. Use text boxes for the first name, last name,
street address, city, state, and ZIP code; give meaningful names to the text
boxes and set the initial Text properties to blank. Add appropriate labels
to each text box to tell the user which data will be entered into each box
and also provide ToolTips.

106 V I S U A L B A S I C User Interface Design

Use buttons for Display Label Info, Clear, and Exit. Make the Display
button the Accept button and the Clear button the Cancel button.

Use three labels for displaying the information for Line 1, Line 2, and
Line 3.

Use a masked text box for the ZIP code.
A click event on the Display Label Info button will display the

following:

Line 1—The first name and last name concatenated together with a
space between.
Line 2—The street address.
Line 3—The city, state, and ZIP code concatenated together. (Make sure
to concatenate a comma and a space between the city and state, using
", " and two spaces between the state and ZIP code.)

Design and code a project that displays shipping
information.

Use an appropriate image in a picture box in the
upper-left corner of the form.

Use text boxes with identifying labels for Catalog
Code, Page Number, and Part Number.

Use two groups of radio buttons on the form; en-
close each group in a group box. The first group box
should have a Text property of Shipping and contain

radio buttons for Express and Ground. Make the
second group box have a Text property of Payment
Type and include radio buttons for Charge, COD, and
Money Order.

Use a check box for New Customer.
Add buttons for Print, Clear, and Exit. Make the

Clear button the Cancel button.
Add ToolTips as appropriate.

Case Studies
VB Mail Order

VB Auto Center

Modify the project from the Chapter 1 VB Auto Center
case study, replacing the buttons with images in pic-
ture boxes. (See “Copy and Move Projects” in Appen-
dix C for help in making a copy of the Chapter 1
project to use for this project.) Above each picture
box, place a label that indicates which department or
command the graphic represents. A click on a picture
box will produce the appropriate information in the
special notices label.

Add an image in a picture box that clears the spe-
cial notices label. Include a ToolTip for each picture
box to help the user understand the purpose of the
graphic.

Add radio buttons that will allow the user to view
the special notices label in different colors.

Include a check box labeled Hours. When the
check box is selected, a new label will display the
message “Open 24 Hours—7 days a week”.

By default, the images are all stored in the Icons
folder. (See the note at the top of the exercises for
graphic file locations.)

Department/Command Image for Picture box

Auto Sales Cars.ico

Service Center Wrench.ico

Detail Shop Water.ico

Employment Opportunities MAIL12.ico

Exit MSGBOX01.ico

C H A P T E R 2 107

Video Bonanza

Design and code a project that displays the location of
videos using radio buttons. Use a radio button for each
of the movie categories and a label to display the aisle
number. A check box will allow the user to display or
hide a message for members. When the check box is
selected, a message stating “All Members Receive a
10% Discount” will appear.

Include buttons (with keyboard access keys) for
Clear and Exit. The Clear button should be set as the
Accept button and the Exit as the Cancel button.

Place a label on the form in a 24-point font that
reads “Video Bonanza”. Use a line to separate the

label from the rest of the interface. Include an image
in a picture box.

Radio Button Location

Comedy Aisle 1

Drama Aisle 2

Action Aisle 3

Sci-Fi Aisle 4

Horror Aisle 5

Very Very Boards

Create a project to display an advertising screen for
Very Very Boards. Include the company name, a slo-
gan (use “The very best in boards” or make up your
own slogan), and a graphic image for a logo. You may
use the graphic included with the text materials
(Skateboard.gif) or one of your own.

Allow the user to select the color for the slogan
text using radio buttons. Additionally, the user may
choose to display or hide the company name, the slo-
gan, and the logo. Use check boxes for the display
options so that the user can select each option
independently.

Include keyboard access keys for the radio but-
tons and the buttons. Make the Exit button the Cancel
button. Create ToolTips for the company name (“Our
company name”), the slogan (“Our slogan”), and the
logo (“Our logo”).

When the project begins execution, the slogan
text should be red and the Red radio button selected.
When the user selects a new color, change the color of
the slogan text to match.

Each of the check boxes must appear selected ini-
tially, since the company name, slogan, logo, and pro-
grammer name display when the form appears. Each
time the user selects or deselects a check box, make
the corresponding item display or hide.

Make the form appear in the center of the screen.

