Math 084 W2010 Worksheet 1.8 v01a
Dressler
Name \qquad

$$
\text { 8) }-5 x=-35
$$

Solve the equation using the multiplication property of equality.

1) $-\frac{1}{3} a=0$
2) $-49 x=21$
3) $\frac{n}{4}=6$
4) $-\frac{1}{3} x=6$
5) $-\frac{\mathrm{n}}{2}=-12$
6) $16=-\frac{4}{5} x$
7) $\frac{\mathrm{v}}{-3}=6$
8) $\frac{2}{3} x=10$
9) $5 x=45$
10) $-\frac{2}{3} y=\frac{1}{5}$
11) $5 x=0$
12) $6 x+x=28$
13) $9 \mathrm{a}=-36$

$$
\text { 15) }-4 x+x=-27
$$

Solve the equation.
16) $-x=-5$

Solve the equation using both the addition and multiplication properties of equality.
25) $4 \mathrm{r}+7=47$
17) $-y=15$
26) $10 \mathrm{n}-10=90$
27) $-16=8 x-8$
28) $76=-9 x-5$
29) $-5 x-19=-74$
30) $-44=-5 x+6$
31) $-5 x=36+7 x$
32) $8 y+6=6 y$
33) $-8 y-36=-2 y$
34) $16 \mathrm{x}-6=4 \mathrm{x}+90$
35) $-3 y+2=-2+6 y$
36) $9 x-2=22-3 x$
37) $-7 x-5 x-6=2 x$
38) $5 r+6=21$

Use the given information to write an equation. Let x represent the number described in the exercise. Then solve the equation and find the number.

39) The product of three-fourths and a number is six.
40) If thirty is divided by a number, the result is five.
41) A number subtracted from eighteen is four.

Solve the problem.

42) The time it takes to travel a given distance at constant speed is given by the formula $t=\frac{d}{r}$, where t is the time, d is the distance, and r is the rate of travel. At 50 miles per hour, what distance can be traveled in 3 hours?
43) The time it takes to travel a given distance at constant speed is given by the formula $t=\frac{d}{r}$, where t is the time, d is the distance, and r is the rate of travel. At 30 miles per hour, what distance can be traveled in 6 hours?
44) The time it takes to travel a given distance at constant speed is given by the formula $t=\frac{d}{r}$, where t is the time, d is the distance, and r is the rate of travel. At 0.5 mile per minute, what distance can be traveled in 30 minutes?
45) The time it takes to travel a given distance at constant speed is given by the formula $t=\frac{d}{r}$, where t is the time, d is the distance, and r is the rate of travel. At 0.5 mile per minute, what distance can be traveled in 50 minutes?
46) To convert meters to feet, you can use the formula $\mathrm{f}=\frac{\mathrm{m}}{0.3038}$, where f is the distance in feet and m is the distance in meters. How many meters (to the nearest tenth) is 8 feet?
47) To convert meters to feet, you can use the formula $\mathrm{f}=\frac{\mathrm{m}}{0.3038}$, where f is the distance in feet and m is the distance in meters. How many meters (to the nearest tenth) is 9 feet?
48) Power is the time rate of doing work and is commonly measured in watts. Power is given by the formula $P=\frac{W}{t}$, where P is power, W is work (in joules), and t is time in seconds. If 700 watts of power are used in 4 seconds, how much work (in joules) was done?
49) Power is the time rate of doing work and is commonly measured in watts. Power is given by the formula $P=\frac{W}{t}$, where P is power, W is work (in joules), and t is time in seconds. If 400 watts of power are used in 22 seconds, how much work (in joules) was done?
50) The speed of a ball dropped from a tower is given by the formula $f=32 t$ where f is in feet per second and t is the number of seconds since the ball was dropped. Find the speed of the ball after 11 seconds.
51) The speed of a ball dropped from a tower is given by the formula $f=32 t$ where f is in feet per second and t is the number of seconds since the ball was dropped. Find the speed of the ball after 9 seconds.
52) The formula $C=522 x+133$ models the data for the cost to produce x units of a product, where C is given in dollars. How many units can be produced for a cost of $\$ 104,533$?
53) The formula $C=590 x+130$ models the data for the cost to produce x units of a product, where C is given in dollars. How many units can be produced for a cost of $\$ 354,130$?
54) The weekly production cost C of manufacturing x calendars is given by $C=25+3 x$, where the variable C is in dollars. What is the cost of producing 279 calendars?
55) The weekly production cost C of manufacturing x calendars is given by $C=25+3 x$, where the variable C is in dollars. What is the cost of producing 235 calendars?

Answer Key

Testname: 02.2V01A

1) $\{0\}$
2) $\{24\}$
3) $\{24\}$
4) $\{-18\}$
5) $\{9\}$
6) $\{0\}$
7) $\{-4\}$
8) $\{7\}$
9) $\left\{-\frac{3}{7}\right\}$
10) $\{-18\}$
11) $\{-20\}$
12) $\{15\}$
13) $\left\{-\frac{3}{10}\right\}$
14) $\{4\}$
15) $\{9\}$
16) $\{5\}$
17) $\{-15\}$
18) $\{15\}$
19) $\{-10\}$
20) $\{6\}$
21) $\{9\}$
22) $\{-14\}$
23) $\{2\}$
24) $\{7\}$
25) $\{10\}$
26) $\{10\}$
27) $\{-1\}$
28) $\{-9\}$
29) $\{11\}$
30) $\{10\}$
31) $\{-3\}$
32) $\{-3\}$
33) $\{-6\}$
34) $\{8\}$
35) $\left\{\frac{4}{9}\right\}$
36) $\{2\}$
37) $\left\{-\frac{3}{7}\right\}$
38) $\{3\}$
39) $\frac{3}{4} \mathrm{x}=6 ; 8$
40) $\frac{30}{x}=5 ; 6$
41) $18-\mathrm{x}=4$; 14
42) 150 mi

Answer Key
Testname: 02.2V01A
43) 180 mi
44) 15 mi
45) 25 mi
46) 2.4 m
47) 2.7 m
48) 2800 joules
49) 8800 joules
50) $352 \mathrm{ft} / \mathrm{sec}$
51) $288 \mathrm{ft} / \mathrm{sec}$
52) 200 units
53) 600 units
54) $\$ 862.00$
55) $\$ 730.00$

