Name____

8) -5x = -35

Solve the equation using the multiplication property of equality.

1)
$$-\frac{1}{3}a = 0$$

9)
$$-49x = 21$$

2)
$$\frac{n}{4} = 6$$

$$10) - \frac{1}{3}x = 6$$

3)
$$-\frac{n}{2} = -12$$

11)
$$16 = -\frac{4}{5}x$$

4)
$$\frac{v}{-3} = 6$$

$$12)\,\frac{2}{3}x = 10$$

5)
$$5x = 45$$

13)
$$-\frac{2}{3}y = \frac{1}{5}$$

6)
$$5x = 0$$

14)
$$6x + x = 28$$

7)
$$9a = -36$$

15)
$$-4x + x = -27$$

Solve the equation.

16)
$$-x = -5$$

Solve the equation using both the addition and multiplication properties of equality.

25)
$$4r + 7 = 47$$

17)
$$-y = 15$$

18)
$$-z = -15$$

27)
$$-16 = 8x - 8$$

19)
$$-x = 10$$

28)
$$76 = -9x - 5$$

20)
$$-x = -6$$

29)
$$-5x - 19 = -74$$

21)
$$-z = -9$$

30)
$$-44 = -5x + 6$$

22)
$$-x = 14$$

31)
$$-5x = 36 + 7x$$

23)
$$-x = -2$$

32)
$$8y + 6 = 6y$$

24)
$$-x = -7$$

33)
$$-8y - 36 = -2y$$

34)
$$16x - 6 = 4x + 90$$

$$35$$
) $-3y + 2 = -2 + 6y$

36)
$$9x - 2 = 22 - 3x$$

37)
$$-7x - 5x - 6 = 2x$$

38)
$$5r + 6 = 21$$

Use the given information to write an equation. Let x represent the number described in the exercise. Then solve the equation and find the number.

- 39) The product of three-fourths and a number is six.
- 40) If thirty is divided by a number, the result is five.
- 41) A number subtracted from eighteen is four.

Solve the problem.

- 42) The time it takes to travel a given distance at constant speed is given by the formula $t = \frac{d}{r}$, where t is the time, d is the distance, and r is the rate of travel. At 50 miles per hour, what distance can be traveled in 3 hours?
- 43) The time it takes to travel a given distance at constant speed is given by the formula $t = \frac{d}{r}$, where t is the time, d is the distance, and r is the rate of travel. At 30 miles per hour, what distance can be traveled in 6 hours?
- 44) The time it takes to travel a given distance at constant speed is given by the formula $t = \frac{d}{r}$, where t is the time, d is the distance, and r is the rate of travel. At 0.5 mile per minute, what distance can be traveled in 30 minutes?
- 45) The time it takes to travel a given distance at constant speed is given by the formula $t = \frac{d}{r}$, where t is the time, d is the distance, and r is the rate of travel. At 0.5 mile per minute, what distance can be traveled in 50 minutes?
- 46) To convert meters to feet, you can use the formula $f = \frac{m}{0.3038}$, where f is the distance in feet and m is the distance in meters. How many meters (to the nearest tenth) is 8 feet?

- 47) To convert meters to feet, you can use the formula $f = \frac{m}{0.3038}$, where f is the distance in feet and m is the distance in meters. How many meters (to the nearest tenth) is 9 feet?
- 48) Power is the time rate of doing work and is commonly measured in watts. Power is given by the formula $P = \frac{W}{t}$, where P is power, W is work (in joules), and t is time in seconds. If 700 watts of power are used in 4 seconds, how much work (in joules) was done?
- 49) Power is the time rate of doing work and is commonly measured in watts. Power is given by the formula $P = \frac{W}{t}$, where P is power, W is work (in joules), and t is time in seconds. If 400 watts of power are used in 22 seconds, how much work (in joules) was done?
- 50) The speed of a ball dropped from a tower is given by the formula f = 32t where f is in feet per second and t is the number of seconds since the ball was dropped. Find the speed of the ball after 11 seconds.
- 51) The speed of a ball dropped from a tower is given by the formula f = 32t where f is in feet per second and t is the number of seconds since the ball was dropped. Find the speed of the ball after 9 seconds.

- 52) The formula C = 522x + 133 models the data for the cost to produce x units of a product, where C is given in dollars. How many units can be produced for a cost of \$104,533?
- 53) The formula C = 590x + 130 models the data for the cost to produce x units of a product, where C is given in dollars. How many units can be produced for a cost of \$354,130?
- 54) The weekly production cost C of manufacturing x calendars is given by C = 25 + 3x, where the variable C is in dollars. What is the cost of producing 279 calendars?
- 55) The weekly production cost C of manufacturing x calendars is given by C = 25 + 3x, where the variable C is in dollars. What is the cost of producing 235 calendars?

Answer Key

Testname: 02.2V01A

- 1) {0}
- 2) {24}
- 3) {24}
- 4) {-18}
- 5) {9}
- 6) {0}
- 7) {-4}
- 8) {7}
- 10) {-18}
- 11) {- 20}
- 12) {15}
- 14) {4}
- 15) {9}
- 16) {5}
- 17) {-15}
- 18) {15}
- 19) {-10}
- 20) {6}
- 21) {9}
- 22) {-14}
- 23) {2}
- 24) {7}
- 25) {10}
- 26) {10}
- 27) {-1}
- 28) {-9}
- 29) {11}
- 30) {10}
- 31) {-3}
- 32) {-3}
- 33) {-6}
- 34) {8}
- 35) $\left\{ \frac{4}{9} \right\}$
- 36) {2}
- $37) \left\{-\frac{3}{7}\right\}$ $38) \left\{3\right\}$ $39) \frac{3}{4}x = 6; 8$

- $40)\,\frac{30}{x} = 5;\,6$
- 41) 18 x = 4; 14
- 42) 150 mi

Answer Key Testname: 02.2V01A

- 43) 180 mi
- 44) 15 mi
- 45) 25 mi
- 46) 2.4 m 47) 2.7 m
- 48) 2800 joules
- 49) 8800 joules
- 50) 352 ft/sec
- 51) 288 ft/sec
- 52) 200 units 53) 600 units
- 54) \$862.00
- 55) \$730.00