Name_____

Solve the rational equation.

$$1) \frac{1}{x-3} = \frac{6}{x^2-9}$$

$$2) \frac{1}{x-2} = \frac{4}{x^2-4}$$

$$3) \frac{x+5}{x+3} = \frac{2}{x+3}$$

4)
$$\frac{x+9}{x+7} = \frac{2}{x+7}$$

$$5) \ 1 + \frac{1}{x} = \frac{20}{x^2}$$

6)
$$1 + \frac{1}{x} = \frac{6}{x^2}$$

$$7)\,\frac{1}{x} + \frac{1}{x+4} = \frac{x+5}{x+4}$$

8)
$$\frac{1}{x} + \frac{1}{x-6} = \frac{x-5}{x-6}$$

8) _____

9)
$$\frac{1}{x} + \frac{1}{x+7} = \frac{x+8}{x+7}$$

9) _____

10)
$$\frac{1}{x} + \frac{1}{x-7} = \frac{x-6}{x-7}$$

10) _____

11)
$$\frac{5x}{x+2} - \frac{10}{x-2} = \frac{5x^2 + 20}{x^2 - 4}$$

11) _____

12)
$$\frac{5x}{x+1} - \frac{5}{x-1} = \frac{5x^2 + 5}{x^2 - 1}$$

12) _____

13)
$$\frac{x+2}{x^2+5x+6} - \frac{2}{x^2+6x+9} = \frac{x-2}{x^2+5x+6}$$

13) _____

Solve.

14) A bank loaned out \$62,000, part of it at the rate of 11% per year and the rest at a rate of 8% 14) per year. If the interest received was \$5830, how much was loaned at 11%?

15) A chemist needs 5 liters of a 50% salt solution. All she has available is a 20% salt solution and a 70% salt solution. How much of each of the two solutions should she mix to obtain her desired solution?	15)
16) Sue took her collection of nickels and dimes to deposit in the bank. She has five fewer nickels than dimes. Her total deposit was \$19.55. How many dimes did she deposit?	16)
17) Sue took her collection of nickels and dimes to deposit in the bank. She has five fewer nickels than dimes. Her total deposit was \$23.90. How many dimes did she deposit?	17)
18) Molly has \$14.90 in coins. She has five more nickels than dimes. She has seven fewer quarters than dimes. How many quarters does she have?	18)
19) Molly has \$11.45 in coins. She has five more nickels than dimes. She has eight fewer quarters than dimes. How many quarters does she have?	19)
20) Molly has \$13.90 in coins. She has four more nickels than dimes. She has six fewer quarters than dimes. How many quarters does she have?	20)
21) A chemist needs 12 liters of a 50% salt solution. All she has available is a 20% salt solution and a 70% salt solution. How much of each of the two solutions should she mix to obtain her desired solution?	21)
22) A chemist needs 7 liters of a 50% salt solution. All she has available is a 20% salt solution and a 70% salt solution. How much of each of the two solutions should she mix to obtain her desired solution?	22)

- 23) A chemist needs 12 liters of a 50% salt solution. All she has available is a 20% salt solution and a 70% salt solution. How much of each of the two solutions should she mix to obtain her desired solution?
- 23) _____
- 24) A chemist needs 4 liters of a 50% salt solution. All she has available is a 20% salt solution and a 70% salt solution. How much of each of the two solutions should she mix to obtain her desired solution?
- 24) _____

Factor completely.

25)
$$(a + 1)^2 - (a + 1) - 12$$

26)
$$(1 + x^2)^2 + 7(1 + x^2) - 60$$

27)
$$(a^2 + 2a)^2 - 9(a^2 + 2a) + 8$$

28)
$$(y + 2)^2 - (y + 2) - 40$$

29)
$$x^2 + 7xy + 10y^2$$

30)
$$u^2 - 3uv - 40v^2$$

31)
$$x^2(y-3) - 5x(y-3) + 6(y-3)$$

32)
$$x^2(y-7) - 8x(y-7) + 15(y-7)$$

32) _____

Factor completely using the grouping method to factor trinomials. If unfactorable, indicate that the polynomial is prime.

33)
$$7x^2 + 78x + 11$$

33) _____

34)
$$2x^2 + 23x + 11$$

34) _____

35)
$$3x^2 + 10x - 8$$

35) _____

36)
$$2x^2 - 5x - 12$$

36) _____

$$37) 3x^2 + 13x - 20$$

37) _____

38)
$$3x^2 + 19x + 20$$

38) _____

Solve the equation.

39)
$$x - \sqrt{3x - 2} = 4$$

39) _____

40)
$$x - \sqrt{3x - 2} = 4$$

41)
$$\sqrt{2x} + 5 = x + 1$$

41) _____

42)
$$\sqrt{2x} + 8 = x + 4$$

42) _____

43)
$$\sqrt{x-3} = x-5$$

43) _____

44)
$$\sqrt{x} + 2 = \sqrt{x + 32}$$

44) _____

45)
$$\sqrt{x} + 1 = \sqrt{x + 7}$$

45) _____

46)
$$\sqrt{x} - 1 = \sqrt{x - 7}$$

46) _____

47)
$$\sqrt{x} - 1 = \sqrt{x - 5}$$

47) _____

48)
$$\sqrt{x} - 2 = \sqrt{x + 28}$$

48) _____

49)
$$\sqrt{x} - 3 = \sqrt{x + 33}$$

Solve the problem.

- 50) A formula used to determine the velocity v in feet per second of an object (neglecting air resistance) after it has fallen a certain height is $v = \sqrt{2gh}$, where g is the acceleration due to gravity and h is the height the object has fallen. If the acceleration g due to gravity on Earth is approximately 32 feet per second per second, find the velocity of a bowling ball after it has fallen 20 feet. (Round to the nearest tenth.)
- 50) _____

- 51) For a cone, the formula $r = \sqrt{\frac{3V}{\pi h}}$ describes the relationship between the radius r of the
- 51) _____

base, the volume V, and the height h. Find the volume if the radius is 7 inches and the cone is 3 inches high. (Use 3.14 as an approximation for π , and round to the nearest tenth.)

- 52) Police use the formula $s = \sqrt{30 \text{fd}}$ to estimate the speed s of a car in miles per hour, where d is the distance in feet that the car skidded and f is the coefficient of friction. If the coefficient of friction on a certain gravel road is 0.25 and a car skidded 300 feet, find the speed of the car, to the nearest mile per hour.
- 52) _____

Find the power of i.

53) i¹²

53) _____

54) i¹⁹

54) _____

55) i⁹

55) _____

56) i¹⁰

57) i⁻⁸

57) _____

58) i⁻⁷

58) _____

59) i-13

59) _____

60) i⁻¹⁴

60) _____

Solve the absolute value inequality. Other than \emptyset , use interval notation to express the solution set and graph the solution set on a number line.

61) |x + 3| < 9

61) _____

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

62) |x + 7| < 2

62) _____

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

63) $|x - 8| - 2 \le 4$

63) _____

64) $|x - 2| + 3 \le 5$

65) | 2(x + 1) + 6 | ≤ 8

65) _____

66) $|3(x+1)+6| \le 18$

66) _____

 $67) \left| \frac{2y + 6}{3} \right| < 2$

-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10

67) _____

 $68) \left| \frac{3y + 12}{4} \right| < 3$

-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10

68) _____

69) |5x + 2| - 2 < -8

69) _____

70) |4x - 6| + 3 < 0

Answer Key

48) Ø 49) Ø

50) 35.8 ft per sec

Testname: E1PREP_0.1TO1.8V01

```
1) Ø
 2) Ø
 3) Ø
 4) Ø
 5) {-5, 4}
 6) {-3, 2}
 7) {1}
 8) {1}
 9) {1}
10) {1}
11) Ø
12) Ø
13) {-4}
14) $29,000
15) 2 liters of the 20% solution; 3 liters of the 70% solution
16) 132 dimes
17) 161 dimes
18) 34 quarters
19) 25 quarters
20) 32 quarters
21) 4.8 liters of the 20% solution; 7.2 liters of the 70% solution
22) 2.8 liters of the 20% solution; 4.2 liters of the 70% solution
23) 4.8 liters of the 20% solution; 7.2 liters of the 70% solution
24) 1.6 liters of the 20% solution; 2.4 liters of the 70% solution
25) ((a + 1) + 3)((a + 1) - 4)
26) ((1 + x^2) + 12)((1 + x^2) - 5)
27) ((a^2 + 2a) - 1)((a^2 + 2a) - 8)
28) Prime
29) (x + 5y)(x + 2y)
30) (u + 5v)(u - 8v)
31) (x - 2)(x - 3)(y - 3)
32) (x-3)(x-5)(y-7)
33) (7x + 1)(x + 11)
34) (2x + 1)(x + 11)
35) (3x - 2)(x + 4)
36) (2x + 3)(x - 4)
37) prime
38) prime
39) {9}
40) {9}
41) {8}
42) {8}
43) {7}
44) {49}
45) {9}
46) {16}
47) {9}
```

Answer Key

Testname: E1PREP_0.1TO1.8V01

- 52) 47 mph
- 53) 1
- 54) -i
- 55) i
- 56) -1
- 57) 1
- 58) i
- 59) -i
- 60) -1
- 61) (-12, 6)

62) (-9, -5)

63) [2, 14]

64) [0, 4]

65) [-8, 0]

66) [-9, 3]

67) (-6, 0)

68) (-8, 0)

69) Ø

70) Ø

